

Epithelix in vitro Solutions for Respiratory Diseases and Chemical Testing

An *in vitro* testing strategy for the development of novel inhaled therapeutics using Human 3D Airway Epithelium Model (MucilAir™)

Samuel Constant, Song Huang, Ludovic Wiszniewski

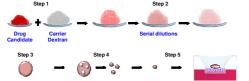
Epithelix Sårl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Switzerland, email: epithelix@epithelix.com

In order to develop efficient tools and formulations for delivering drug to the lungs, *in vitro* cell models of the human airway epithelia would be invaluable. Epithelix has developed a novel *in vitro* cell model of the human airway epithelium named MucilAirTM. MucilAirTM maintains the fully differentiated, morphologically and functionally, characteristics of the native tissues for more than one year (tight junctions, cilia beating, cytokine/chemokine/metalloproteinase release, ion transport and CypP450s activity). Epithelia from several pathologies can be reconstructed (e.g. Asthma, Allergic Rhinitis, COPD, CF, etc.).

Due to its unique long shelf-life, this model is used for studying the human respiratory diseases, and for testing the longterm/chronic effects of drugs candidates on respiratory tract. Several applications of MucilAir[™] relevant to Intranasal/intrabronchial drug delivery, evaluation of pro- or anti-inflammatory effect of drug candidates and formulations, acute, long-term and repeated dose inhalation toxicity testing, effect on cilia beating frequency and mucociliary clearance are presented.

The advantages of MucilAirTM

It is composed of primary human respiratory cells.


It mimics the morphology and functions of the native human airway epithelium.

It has a unique shelf-life of 12 months.

> Epithelia from **different pathologies** are available (asthma, COPD, CF, allergic rhinitis).

It is ready and easy to use.

Solid Exposure: Dextran Tablets Preparation

- 1- Dilute the drug candidate with the carrier at the targeted concentration and mix.
- 2- Make serial dilutions.
- 3- Compress the powder into a mold to obtain a large tablet.
- 4- Stamp out smaller tablets with a biopsy punch.
 5- Apply on MucilAir™, incubate at 37°C for 24 hours and measure end-points.

Intranasal /intrabronchial permeation of drugs/formulations

Molecules	Papp (cm/s) ▲→R	Papp (cm/s) R→A	Asymmetry Ratio	Batch	Age of the MucilAir™ (months)	TEER Before exp (Ω.cm ²)	TEER After Exp (Ω.cm²)	Papp (cm/s) A→B	
Salicilic Acid	7.7 x 10 ⁻⁵	1.7 x 10 ⁻⁵	0.2	Nasal-MucilAir ^{mi}					
			0.2	Pol 41	13	554 ± 103	442 ± 33	3.97 10 ⁻⁵ ± 4.32 10 ⁻⁷	
Nicotine	2.1 x 10 ⁻⁵	3.3 x 10 ⁻⁵	1.6	Pol 43	12	469 ± 9	355 ± 54	3.80 10 ⁻⁵ ± 2.06 10 ⁻⁶	
				Pol 49	9	615 ± 35	340 ± 14	3.02 10 ⁻⁵ ± 1.34 10 ⁻⁶	
Ambroxol	1.3 x 10 ⁻⁵	1.9 x 10 ⁻⁵	1.5	Pol 51	6	376 ± 65	256 ± 30	2.88 10 ⁻⁵ ± 2.41 10 ⁻⁶	
				Pol 52	6	396 ± 14	332 ± 40	1.66 10 ⁻⁵ ± 6.93 10 ⁻⁶	
Propranolol.HCI	1.2 x 10 ⁻⁵	1.6 x 10 ⁻⁵	1.3	Pol 53	6	495 ± 23	439 ± 75	1.22 10 ⁻⁵ ± 5.37 10 ⁻⁷	
				Pol 55	2	589 ± 2	685 ± 35	2.23 10 ⁻⁵ ± 1.18 10 ⁻⁵	
Ibuprofen	1.1 x 10 ⁻⁵	1.9 x 10 ⁻⁵	1.7	Pol 57	3	480 ± 35	294 ± 37	2.11 10 ⁻⁵ ± 9.49 10 ⁻⁶	
				Pol 58	2	413 ± 28	406 ± 14	2.20 10 ⁻⁵ ± 1.12 10 ⁻⁵	
Tripolidine.HCI	9.7 x 10 ⁻⁶	1.2 x 10 ⁻⁵	1.2	Pol 59	2	375 ± 2	338 ± 2	1.86 10 ⁻⁵ ± 9.52 10 ⁻⁶	
				Pol 60	1	619 ± 26	460 ± 44	2.01 10 ⁻⁵ ± 1.00 10 ⁻⁵	
Quinidine	9.7 x 10-6	NC	NC	Mean Value (N=22)				2.45 10 ⁻⁵ ± 2.42 10 ⁻⁶	
Tetracaïne HCI	8.0 x 10 ⁻⁶	1.1 x 10 ⁻⁵	1.3		Bronchial-MucilAir™				
reuauanie.nui	0.0 × 10	1.1 × 10*	1.5	Bron 009	8	371 ± 72	310 ± 23	2.26 10 ⁻⁵ ± 1.12 10 ⁻⁵	
Metoprolol	3.02x 10 ⁻⁶	NC	NC	Bron 012	8	182 ± 0	198 ± 0	1.82 10 ⁻⁵ ± 8.96 10 ⁻⁶	
				Bron 014	6	236 ± 91	233 ± 40	0.89 10 ⁻⁵ ± 2.71 10 ⁻⁷	
Dopamine.HCl	3.0 x 10 ⁻⁶	2.5 x 10 ⁻⁶	0.8	Bron 015	5	152 ± 23	191 ± 14	0.93 10 ⁻⁵ ± 8.26 10 ⁻⁷	
				Bron 016	3	480 ± 49	406 ± 107	1.26 10 ⁻⁵ ± 3.54 10 ⁻⁶	
Atenolol	2.2 x 10 ⁻⁶	6.7 x 10 ⁻⁶	3.0	Mean Value (N=10)				1.43 10 ⁻⁵ ± 2.83 10 ⁻⁶	
Losartan	1.8 x 10 ⁻⁶	NC	NC	TOTAL Nasal-MucilAir™ and Bronchial-MucilAir™					
				Mean Value (N=32)				2.13 10 ⁻⁵ ± 2.05 10 ⁻⁶	

(a)

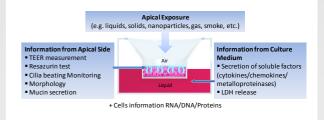
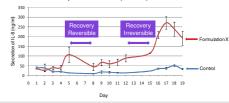
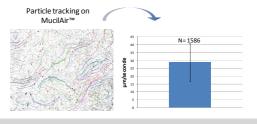

.

Figure (a): Assessment of the drug permeability across MucilAir using 12 reference compounds. Figure (b): Inter-Batch variability. A—B transport of Salicilic Acid (1 mM; pH 7; N=2) was measured on several batches of MucilAir from different donors. Cultures with ages from 1 to 13 months were compared. Interestingly slightly lower permeability constants of salicilic acid were obtained on Bronchial epithelium.

Conclusions

- 1: Taken together, MucilAir™ is a good, reliable *in vitro* cell model for studying respiratory absorption.
- 2: High reproducibility and small inter batch variability are observed.
- 3: Age of the culture of MucilAir[™] has minor influence on permeability.
- 4: Standard Operating procedures are defined and available.


Testing Strategy


Repeated Dose Toxicity Testing

Pro-Inflammatory evaluation

Mucociliary Clearance Analysis

Acknowledgements

